Copied to
clipboard

G = C42.C23order 336 = 24·3·7

17th non-split extension by C42 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D14.4D6, D6.3D14, Dic7.6D6, C42.17C23, Dic3.5D14, Dic21.14C22, C21⋊Q85C2, C7⋊D41S3, C3⋊D41D7, C219(C4○D4), C21⋊D44C2, (C2×C14).1D6, (C2×C6).2D14, C34(D42D7), C74(D42S3), (S3×Dic7)⋊3C2, (Dic3×D7)⋊4C2, C22.3(S3×D7), (C2×Dic21)⋊8C2, (C6×D7).4C22, C6.17(C22×D7), (S3×C14).3C22, C14.17(C22×S3), (C2×C42).11C22, (C3×Dic7).6C22, (C7×Dic3).5C22, C2.19(C2×S3×D7), (C7×C3⋊D4)⋊1C2, (C3×C7⋊D4)⋊2C2, SmallGroup(336,153)

Series: Derived Chief Lower central Upper central

C1C42 — C42.C23
C1C7C21C42C6×D7Dic3×D7 — C42.C23
C21C42 — C42.C23
C1C2C22

Generators and relations for C42.C23
 G = < a,b,c,d | a6=b2=1, c14=d2=a3, bab=cac-1=dad-1=a-1, cbc-1=ab, dbd-1=a4b, dcd-1=c13 >

Subgroups: 396 in 80 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3⋊D4, C3×D4, Dic7, Dic7, C28, D14, C2×C14, C2×C14, S3×C7, C3×D7, C42, C42, D42S3, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7⋊D4, C7×D4, C7×Dic3, C3×Dic7, Dic21, C6×D7, S3×C14, C2×C42, D42D7, Dic3×D7, S3×Dic7, C21⋊D4, C21⋊Q8, C3×C7⋊D4, C7×C3⋊D4, C2×Dic21, C42.C23
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, D42S3, C22×D7, S3×D7, D42D7, C2×S3×D7, C42.C23

Smallest permutation representation of C42.C23
On 168 points
Generators in S168
(1 72 37 15 58 51)(2 52 59 16 38 73)(3 74 39 17 60 53)(4 54 61 18 40 75)(5 76 41 19 62 55)(6 56 63 20 42 77)(7 78 43 21 64 29)(8 30 65 22 44 79)(9 80 45 23 66 31)(10 32 67 24 46 81)(11 82 47 25 68 33)(12 34 69 26 48 83)(13 84 49 27 70 35)(14 36 71 28 50 57)(85 115 143 99 129 157)(86 158 130 100 144 116)(87 117 145 101 131 159)(88 160 132 102 146 118)(89 119 147 103 133 161)(90 162 134 104 148 120)(91 121 149 105 135 163)(92 164 136 106 150 122)(93 123 151 107 137 165)(94 166 138 108 152 124)(95 125 153 109 139 167)(96 168 140 110 154 126)(97 127 155 111 113 141)(98 142 114 112 156 128)
(1 163)(2 136)(3 165)(4 138)(5 167)(6 140)(7 141)(8 114)(9 143)(10 116)(11 145)(12 118)(13 147)(14 120)(15 149)(16 122)(17 151)(18 124)(19 153)(20 126)(21 155)(22 128)(23 157)(24 130)(25 159)(26 132)(27 161)(28 134)(29 97)(30 142)(31 99)(32 144)(33 101)(34 146)(35 103)(36 148)(37 105)(38 150)(39 107)(40 152)(41 109)(42 154)(43 111)(44 156)(45 85)(46 158)(47 87)(48 160)(49 89)(50 162)(51 91)(52 164)(53 93)(54 166)(55 95)(56 168)(57 90)(58 121)(59 92)(60 123)(61 94)(62 125)(63 96)(64 127)(65 98)(66 129)(67 100)(68 131)(69 102)(70 133)(71 104)(72 135)(73 106)(74 137)(75 108)(76 139)(77 110)(78 113)(79 112)(80 115)(81 86)(82 117)(83 88)(84 119)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 14 15 28)(2 27 16 13)(3 12 17 26)(4 25 18 11)(5 10 19 24)(6 23 20 9)(7 8 21 22)(29 30 43 44)(31 56 45 42)(32 41 46 55)(33 54 47 40)(34 39 48 53)(35 52 49 38)(36 37 50 51)(57 58 71 72)(59 84 73 70)(60 69 74 83)(61 82 75 68)(62 67 76 81)(63 80 77 66)(64 65 78 79)(85 96 99 110)(86 109 100 95)(87 94 101 108)(88 107 102 93)(89 92 103 106)(90 105 104 91)(97 112 111 98)(113 128 127 114)(115 126 129 140)(116 139 130 125)(117 124 131 138)(118 137 132 123)(119 122 133 136)(120 135 134 121)(141 156 155 142)(143 154 157 168)(144 167 158 153)(145 152 159 166)(146 165 160 151)(147 150 161 164)(148 163 162 149)

G:=sub<Sym(168)| (1,72,37,15,58,51)(2,52,59,16,38,73)(3,74,39,17,60,53)(4,54,61,18,40,75)(5,76,41,19,62,55)(6,56,63,20,42,77)(7,78,43,21,64,29)(8,30,65,22,44,79)(9,80,45,23,66,31)(10,32,67,24,46,81)(11,82,47,25,68,33)(12,34,69,26,48,83)(13,84,49,27,70,35)(14,36,71,28,50,57)(85,115,143,99,129,157)(86,158,130,100,144,116)(87,117,145,101,131,159)(88,160,132,102,146,118)(89,119,147,103,133,161)(90,162,134,104,148,120)(91,121,149,105,135,163)(92,164,136,106,150,122)(93,123,151,107,137,165)(94,166,138,108,152,124)(95,125,153,109,139,167)(96,168,140,110,154,126)(97,127,155,111,113,141)(98,142,114,112,156,128), (1,163)(2,136)(3,165)(4,138)(5,167)(6,140)(7,141)(8,114)(9,143)(10,116)(11,145)(12,118)(13,147)(14,120)(15,149)(16,122)(17,151)(18,124)(19,153)(20,126)(21,155)(22,128)(23,157)(24,130)(25,159)(26,132)(27,161)(28,134)(29,97)(30,142)(31,99)(32,144)(33,101)(34,146)(35,103)(36,148)(37,105)(38,150)(39,107)(40,152)(41,109)(42,154)(43,111)(44,156)(45,85)(46,158)(47,87)(48,160)(49,89)(50,162)(51,91)(52,164)(53,93)(54,166)(55,95)(56,168)(57,90)(58,121)(59,92)(60,123)(61,94)(62,125)(63,96)(64,127)(65,98)(66,129)(67,100)(68,131)(69,102)(70,133)(71,104)(72,135)(73,106)(74,137)(75,108)(76,139)(77,110)(78,113)(79,112)(80,115)(81,86)(82,117)(83,88)(84,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,14,15,28)(2,27,16,13)(3,12,17,26)(4,25,18,11)(5,10,19,24)(6,23,20,9)(7,8,21,22)(29,30,43,44)(31,56,45,42)(32,41,46,55)(33,54,47,40)(34,39,48,53)(35,52,49,38)(36,37,50,51)(57,58,71,72)(59,84,73,70)(60,69,74,83)(61,82,75,68)(62,67,76,81)(63,80,77,66)(64,65,78,79)(85,96,99,110)(86,109,100,95)(87,94,101,108)(88,107,102,93)(89,92,103,106)(90,105,104,91)(97,112,111,98)(113,128,127,114)(115,126,129,140)(116,139,130,125)(117,124,131,138)(118,137,132,123)(119,122,133,136)(120,135,134,121)(141,156,155,142)(143,154,157,168)(144,167,158,153)(145,152,159,166)(146,165,160,151)(147,150,161,164)(148,163,162,149)>;

G:=Group( (1,72,37,15,58,51)(2,52,59,16,38,73)(3,74,39,17,60,53)(4,54,61,18,40,75)(5,76,41,19,62,55)(6,56,63,20,42,77)(7,78,43,21,64,29)(8,30,65,22,44,79)(9,80,45,23,66,31)(10,32,67,24,46,81)(11,82,47,25,68,33)(12,34,69,26,48,83)(13,84,49,27,70,35)(14,36,71,28,50,57)(85,115,143,99,129,157)(86,158,130,100,144,116)(87,117,145,101,131,159)(88,160,132,102,146,118)(89,119,147,103,133,161)(90,162,134,104,148,120)(91,121,149,105,135,163)(92,164,136,106,150,122)(93,123,151,107,137,165)(94,166,138,108,152,124)(95,125,153,109,139,167)(96,168,140,110,154,126)(97,127,155,111,113,141)(98,142,114,112,156,128), (1,163)(2,136)(3,165)(4,138)(5,167)(6,140)(7,141)(8,114)(9,143)(10,116)(11,145)(12,118)(13,147)(14,120)(15,149)(16,122)(17,151)(18,124)(19,153)(20,126)(21,155)(22,128)(23,157)(24,130)(25,159)(26,132)(27,161)(28,134)(29,97)(30,142)(31,99)(32,144)(33,101)(34,146)(35,103)(36,148)(37,105)(38,150)(39,107)(40,152)(41,109)(42,154)(43,111)(44,156)(45,85)(46,158)(47,87)(48,160)(49,89)(50,162)(51,91)(52,164)(53,93)(54,166)(55,95)(56,168)(57,90)(58,121)(59,92)(60,123)(61,94)(62,125)(63,96)(64,127)(65,98)(66,129)(67,100)(68,131)(69,102)(70,133)(71,104)(72,135)(73,106)(74,137)(75,108)(76,139)(77,110)(78,113)(79,112)(80,115)(81,86)(82,117)(83,88)(84,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,14,15,28)(2,27,16,13)(3,12,17,26)(4,25,18,11)(5,10,19,24)(6,23,20,9)(7,8,21,22)(29,30,43,44)(31,56,45,42)(32,41,46,55)(33,54,47,40)(34,39,48,53)(35,52,49,38)(36,37,50,51)(57,58,71,72)(59,84,73,70)(60,69,74,83)(61,82,75,68)(62,67,76,81)(63,80,77,66)(64,65,78,79)(85,96,99,110)(86,109,100,95)(87,94,101,108)(88,107,102,93)(89,92,103,106)(90,105,104,91)(97,112,111,98)(113,128,127,114)(115,126,129,140)(116,139,130,125)(117,124,131,138)(118,137,132,123)(119,122,133,136)(120,135,134,121)(141,156,155,142)(143,154,157,168)(144,167,158,153)(145,152,159,166)(146,165,160,151)(147,150,161,164)(148,163,162,149) );

G=PermutationGroup([[(1,72,37,15,58,51),(2,52,59,16,38,73),(3,74,39,17,60,53),(4,54,61,18,40,75),(5,76,41,19,62,55),(6,56,63,20,42,77),(7,78,43,21,64,29),(8,30,65,22,44,79),(9,80,45,23,66,31),(10,32,67,24,46,81),(11,82,47,25,68,33),(12,34,69,26,48,83),(13,84,49,27,70,35),(14,36,71,28,50,57),(85,115,143,99,129,157),(86,158,130,100,144,116),(87,117,145,101,131,159),(88,160,132,102,146,118),(89,119,147,103,133,161),(90,162,134,104,148,120),(91,121,149,105,135,163),(92,164,136,106,150,122),(93,123,151,107,137,165),(94,166,138,108,152,124),(95,125,153,109,139,167),(96,168,140,110,154,126),(97,127,155,111,113,141),(98,142,114,112,156,128)], [(1,163),(2,136),(3,165),(4,138),(5,167),(6,140),(7,141),(8,114),(9,143),(10,116),(11,145),(12,118),(13,147),(14,120),(15,149),(16,122),(17,151),(18,124),(19,153),(20,126),(21,155),(22,128),(23,157),(24,130),(25,159),(26,132),(27,161),(28,134),(29,97),(30,142),(31,99),(32,144),(33,101),(34,146),(35,103),(36,148),(37,105),(38,150),(39,107),(40,152),(41,109),(42,154),(43,111),(44,156),(45,85),(46,158),(47,87),(48,160),(49,89),(50,162),(51,91),(52,164),(53,93),(54,166),(55,95),(56,168),(57,90),(58,121),(59,92),(60,123),(61,94),(62,125),(63,96),(64,127),(65,98),(66,129),(67,100),(68,131),(69,102),(70,133),(71,104),(72,135),(73,106),(74,137),(75,108),(76,139),(77,110),(78,113),(79,112),(80,115),(81,86),(82,117),(83,88),(84,119)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,14,15,28),(2,27,16,13),(3,12,17,26),(4,25,18,11),(5,10,19,24),(6,23,20,9),(7,8,21,22),(29,30,43,44),(31,56,45,42),(32,41,46,55),(33,54,47,40),(34,39,48,53),(35,52,49,38),(36,37,50,51),(57,58,71,72),(59,84,73,70),(60,69,74,83),(61,82,75,68),(62,67,76,81),(63,80,77,66),(64,65,78,79),(85,96,99,110),(86,109,100,95),(87,94,101,108),(88,107,102,93),(89,92,103,106),(90,105,104,91),(97,112,111,98),(113,128,127,114),(115,126,129,140),(116,139,130,125),(117,124,131,138),(118,137,132,123),(119,122,133,136),(120,135,134,121),(141,156,155,142),(143,154,157,168),(144,167,158,153),(145,152,159,166),(146,165,160,151),(147,150,161,164),(148,163,162,149)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E6A6B6C7A7B7C 12 14A14B14C14D14E14F14G14H14I21A21B21C28A28B28C42A···42I
order122223444446667771214141414141414141421212128282842···42
size11261426142121422428222282224441212124441212124···4

42 irreducible representations

dim1111111122222222244444
type++++++++++++++++-+-+-
imageC1C2C2C2C2C2C2C2S3D6D6D6D7C4○D4D14D14D14D42S3S3×D7D42D7C2×S3×D7C42.C23
kernelC42.C23Dic3×D7S3×Dic7C21⋊D4C21⋊Q8C3×C7⋊D4C7×C3⋊D4C2×Dic21C7⋊D4Dic7D14C2×C14C3⋊D4C21Dic3D6C2×C6C7C22C3C2C1
# reps1111111111113233313336

Matrix representation of C42.C23 in GL6(𝔽337)

12900000
2083350000
001000
000100
00003360
00000336
,
198390000
491390000
00336000
00033600
000018975
000018148
,
2542460000
309830000
003519300
0028819200
00001890
000018148
,
2542460000
309830000
0014433600
0017819300
00001890
00000189

G:=sub<GL(6,GF(337))| [1,208,0,0,0,0,290,335,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,336,0,0,0,0,0,0,336],[198,49,0,0,0,0,39,139,0,0,0,0,0,0,336,0,0,0,0,0,0,336,0,0,0,0,0,0,189,18,0,0,0,0,75,148],[254,309,0,0,0,0,246,83,0,0,0,0,0,0,35,288,0,0,0,0,193,192,0,0,0,0,0,0,189,18,0,0,0,0,0,148],[254,309,0,0,0,0,246,83,0,0,0,0,0,0,144,178,0,0,0,0,336,193,0,0,0,0,0,0,189,0,0,0,0,0,0,189] >;

C42.C23 in GAP, Magma, Sage, TeX

C_{42}.C_2^3
% in TeX

G:=Group("C42.C2^3");
// GroupNames label

G:=SmallGroup(336,153);
// by ID

G=gap.SmallGroup(336,153);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,55,218,116,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=1,c^14=d^2=a^3,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a*b,d*b*d^-1=a^4*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽